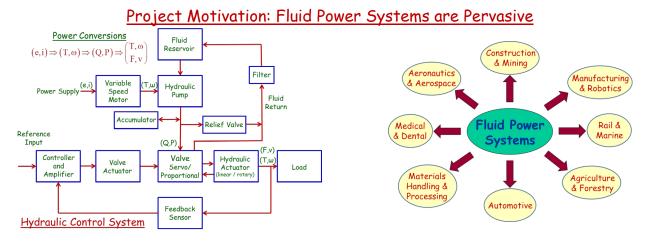
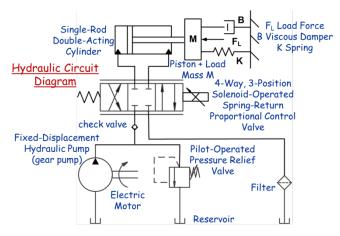
Fluid Power System and Control Module Development Status Report October 31, 2013

Kevin Craig, Ph.D.


Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University

The objective for this project was to take integrated knowledge, both academic and industry best practices, in Fluid Power Systems and Control gathered by the investigator and present it in a form readily accessible to students and practicing engineers. The development of a dozen modules, with voice and /or video, was made possible with the funds requested (\$3500).


The modules created are:

Module 1:	Overview: Mechatronics and Model-Based Design
Module 2:	Description of the Physical System and its Components:
	Hydraulic Cylinders, Hydraulic Control Valves,
	Hydraulic Proportional Valves, Hydraulic Pumps
	Hydraulic Transmission Lines
Module 3:	Physical System Modeling
Module 4:	Physical Model of the Physical System:
	Hydraulic Cylinders, Hydraulic Control Valves,
	Hydraulic Proportional Valves, Hydraulic Pumps
	Hydraulic Transmission Lines
Module 5:	Mathematical Modeling
Module 6:	Mathematical Models of System Components
	Hydraulic Cylinders, Hydraulic Control Valves;
	Hydraulic Proportional Valves, Hydraulic Pumps
	Hydraulic Transmission Lines
Module 7:	Mathematical Model of Integrated System
Module 8:	Predicted Dynamic Response
	Linearization and Analytical Solution
	Numerical Solution: Simulink and SimHydraulics
Module 9:	Predicted Dynamic Response of Components & Integrated System
Module 10:	Experimental Validation of Dynamic Response Predictions
Module 11:	Control Design
	Position, Velocity, and Force Control
	Feedback, Feedforward, Observers
Module 12:	Pump-Controlled vs. Valve-Controlled Systems

These modules will be used in the spring 2014 required junior-level mechanical engineering course *Multidisciplinary Engineering Systems* taught by the investigator with 100 students. They will then be available to NFPA for posting and distribution in the summer of 2014.

Fluid Power System at Price Engineering for Marquette Engineering Students

References Used in Module Creation

Industry: Fluid Power

- Industrial Hydraulics Manual, Eaton Corp., 2010.
- Electrohydraulic Proportional and Control Systems, Bosch Automation, 1999.
- Electrohydraulic Proportional Valves and Closed Loop Control Valves, Bosch Automation, 1989.
- Closed Loop Electrohydraulic Systems Manual, Vickers, Inc., 1998.
- Basic Electronics for Hydraulic Engineers, Eaton Corp., 1988.

<u>Academic: Fluid Power</u>

- Fundamentals of Fluid Power and Control, J. Watton, Cambridge, 2009.
- Hydraulic Control Systems, H. Merritt, Wiley, 1967.
- Hydraulic Control Systems, N. Manring, Wiley, 2005.
- Modeling, Monitoring, and Diagnostic Techniques for Fluid Power Systems, J. Watton, Springer, 2007.
- Control of Fluid Power: Analysis and Design, D. McCloy and H.R. Martin, 2nd Edition, Ellis Horwood, 1980.
- Hydraulic Component Design and Selection, E.C. Fitch and I.T. Hong, BarDyne, Inc., 1998.

<u>Academic: System Dynamics and Control</u>

- Introduction to System Dynamics, J. Shearer, A. Murphy, and H. Richardson, Addison-Wesley, 1967.
- Dynamic Modeling and Control of Engineering Systems, J. Shearer, B, Kulakowski, and J. Gardner, 2nd Edition, Prentice Hall, 1997.
- Modeling, Analysis, and Control of Dynamic Systems, W.J. Palm, 2nd Edition, Wiley, 1999.
- Mechatronics, S. Cetinkunt, Wiley, 2007.
- Introduction to Fluid Mechanics, R. Fox and A. McDonald, 3rd Edition, Wiley, 1985.
- Sensors and Actuators, Clarence de Silva, CRC Press, 2007.